Sufficient triangular norms in many-valued logics with standard negation
نویسندگان
چکیده
In many-valued logics with the unit interval as the set of truth values, from the standard negation and the product (or, more generally, from any strict Frank t-norm) all measurable logical functions can be derived, provided that also operations with countable arity are allowed. The question remained open whether there are other t-norms with this property or whether all strict t-norms possess this property. We give a full solution to this problem (in the case of strict t-norms), together with convenient sufficient conditions. We list several families of strict t-norms having this property and provide also counterexamples (the Hamacher product is one of them). Finally, we discuss the consequences of these results for the characterization of tribes based on strict t-norms.
منابع مشابه
Truth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملLINZ 2003 24 th Linz Seminar on Fuzzy Set Theory TRIANGULAR NORMS AND RELATED OPERATORS IN MANY - VALUED LOGICS
9:00 am – 10:30 am János C. Fodor, Bernard De Baets, Tomasa Calvo, Structure of uninorms with given continuous underlying t-norms and t-conorms Glad Deschrijver, Etienne E. Kerre, The residuation principle for intuitionistic fuzzy t-norms 11.00 am – 12:30 am Michal Baczynski, On the characterizations of intuitionistic fuzzy implications Carol L. Walker, Elbert A. Walker, T-norms on fuzzy sets o...
متن کاملFuzzy Description Logics - A Survey
Mathematical Fuzzy Logics [51,60] have a long tradition with roots going back to the many-valued logics of Łukasiewicz, Gödel, and Kleene [57, 68, 73] and the Fuzzy Set Theory of Zadeh [111]. Their purpose is to model vagueness or imprecision in the real world, by introducing new degrees of truth as additional shades of gray between the Boolean true and false. For example, one can express the d...
متن کاملStructure of left-continuous triangular norms with strong induced negations
This paper is the continuation of [11] where the rotation construction of left-continuous triangular norms was presented. Here the class of triangular subnorms and a second construction, called rotation-annihilation, are introduced: Let T1 be a left-continuous triangular norm. If T1 has no zero divisors then let T2 be a left-continuous rotation invariant t-subnorm. If T1 has zero divisors then ...
متن کاملResiduated fuzzy logics with an involutive negation
Residuated fuzzy logic calculi are related to continuous t-norms, which are used as truth functions for conjunction, and their residua as truth functions for implication. In these logics, a negation is also definable from the implication and the truth constant 0, namely ¬φ isφ → 0. However, this negation behaves quite differently depending on the t-norm. For a nilpotent t-norm (a t-norm which i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arch. Math. Log.
دوره 44 شماره
صفحات -
تاریخ انتشار 2005